17 Geometric Aesthetics

Thursday, March 10, 2016 2:55 PM

Today:

All designers carry a sketchbook

New TA starting next week: Thomas

Problems posting video? Post to YouTube, then insert link.

Clay workshop from Bernt Savig, local sculptor and art instructor. \$20 per person in materials, modeling clay, armatures, tools.

Options. Start with an

- a. In class demo only, a Friday
 - b. 2 hr hands-on workshop 5 pm. Dept buys and keeps materials.
 - c. 2 hr hands-on workshop 5 pm. You buy and keep materials.

Geometric Aesthetics

Classical Composition

Universal Principles of Design topics

Symmetry

Area Alignment

Rule of Thirds

Fibonacci

Golden Ratio

Classical Composition

Much comes from classical painting composition, dating far back. These rules are made to be broken. https://en.wikipedia.org/wiki/Composition %28visual arts%29

Contents [hide]

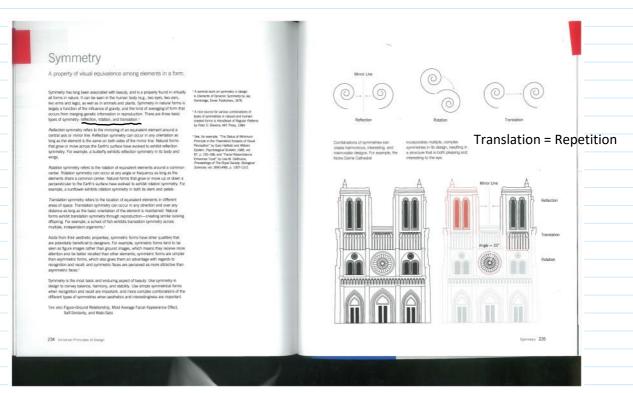
- 1 Elements of design
 - 1.1 Line and shape
 - 1.2 Colour
- 2 Principles of organization
 - 2.1 Viewpoint (leading the eye)
- 3 Compositional techniques
 - 3.1 Rule of thirds
 - 3.2 Rule of odds
 - 3.3 Rule of space
 - 3.4 Simplification
 - 3.4.1 Shallow Depth of Field
 - 3.5 Geometry and symmetry
 - 3.6 Creating movement
 - 3.7 Other techniques
- 4 Example
- 5 See also
- 6 References
- 7 Further reading
- 8 External links

	011 /02	O 115 dai a 157 d 25
		the audience's attention;
w	hat to	touch first, what second?
i		

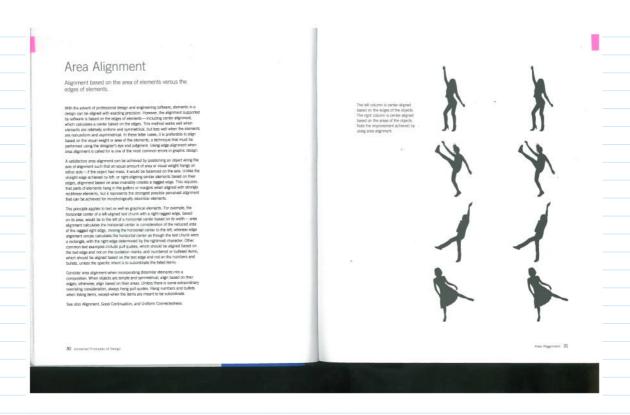
o References

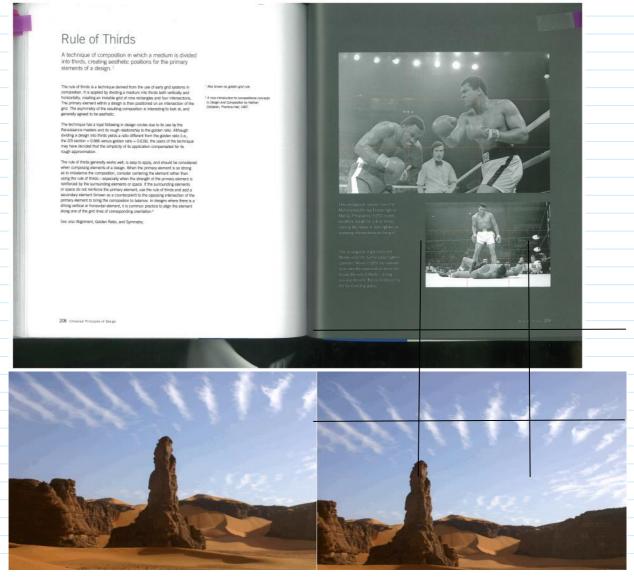
- 7 Further reading
- 8 External links

Modern implementation in 2D graphic design, part of **Human-Computer Interface (HCI)** research Ware, Colin. *Visual Thinking For Design*. Morgan Kaufmann, 2010. Whole pdf http://ehost.com.ua/IGbooks/Visual%20Thinking%20for%20Design%20-%20Colin%20Ware.pdf
Table of contents: http://www.amazon.com/Visual-Thinking-Kaufmann-Interactive-Technologies/dp/0123708966#reader 0123708966


Preface	ix
VISUAL QUERIES	1
The Apparatus and Process of Seeing	5
The Act of Perception	8
Bottom-Up	10
Top-Down	12
Implications for Design	14
Nested Loops	17
Distributed Cognition	19
Conclusion	20
Contention	,,
WHAT WE CAN EASILY SEE	23
WHAT WE CAN EASILY SEE The Machinery of Low-Level Feature Analysis	23
The Machinery of Low-Level Feature Analysis	25
The Machinery of Low-Level Feature Analysis What and Where Pathways	25 26
The Machinery of Low-Level Feature Analysis What and Where Pathways Eye Movement Planning What Stands Out = What We Can Bias for	25 26 26
The Machinery of Low-Level Feature Analysis What and Where Pathways Eye Movement Planning	25 26 26 27
The Machinery of Low-Level Feature Analysis What and Where Pathways Eye Movement Planning What Stands Out = What We Can Bias for Lessons for Design Motion	25 26 26 27 33
The Machinery of Low-Level Feature Analysis What and Where Pathways Eye Movement Planning What Stands Out = What We Can Bias for Lessons for Design	25 26 26 27 33 36

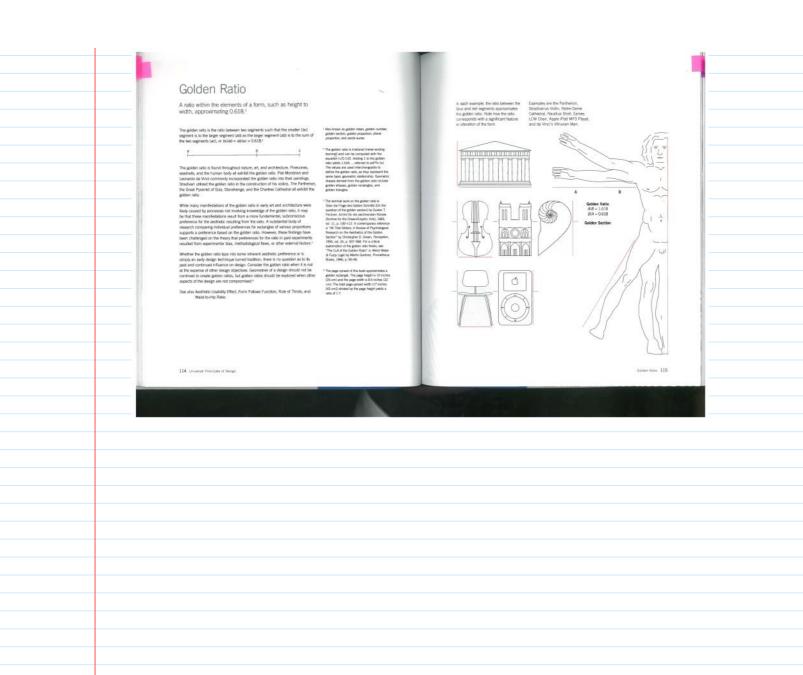
Using Multiscale Structure to Design for Search	40
Conclusion	41
STRUCTURING TWO-DIMENSIONAL SPACE	43
2.5D Space	44
The Pattern-Processing Machinery	46
The Binding Problem: Features to Contours	46
The Generalized Contour	49
Texture Regions	50
Interference and Selective Tuning	51
Patterns, Channels, and Attention	52
Intermediate Patterns	53
Pattern Learning	54
Serial Processing	55
Visual Pattern Queries and the Apprehendable Chunk	55
Multi-chunk Queries	.56
Spatial Layout Horizontal and Vertical	56
Horizontal and Vertical	57
Pattern for Design	58
Examples of Pattern Queries with Common Graphical Artifacts	60
Semantic Pattern Mappings	62
COLOR	
COLOR	65
The Color-Processing Machinery	
Opponent Process Theory	68
Channel Properties	69
Principles for Design	75
Showing Detail	75
Color-Coding Information	77
Large and Small Areas	77
Emphasis and Highlighting	78
Color Sequences Color on Shaded Surfaces	80
Color on Shaded Surfaces	83
Semantics of Color	84
Conclusion	84
GETTING THE INFORMATION: VISUAL	
SPACE AND TIME	87
Depth Perception and Cue Theory	89
Stereoscopic Depth	94


2.5D DESIGN	95	
How Much of the Third Dimension?	97	
Affordances	99	
The Where Pathway	100	
Artificial Interactive Spaces	102	
Space Traversal and Cognitive Costs	103	
Conclusion	105	
VISUAL OBJECTS, WORDS, AND MEANING	107	
The Inferotemporal Cortex and the What Channel	108	
Generalized Views from Patterns	109	
Structured Objects	110	
Gist and Scene Perception	112	
Visual and Verbal Working Memory	114	
Verbal Working Memory	115	
Control of the Attention and the Cognitive Process	115	
Long-term Memory	116	
Priming	118	
Getting into Visual Working Memory	118	
Thinking in Action: Receiving a Cup of Coffee	120	
Elaborations and Implications for Design	121	
Make Objects Easy to Identify	121	
Novelty	122	
Images as Symbols	123	
Meaning and Emotion	124	
Imagery and Desire	125	
Conclusion	126	
VISUAL AND VERBAL NARRATIVE	129	
Visual Thinking Versus Language-Based Thinking	130	
Learned Symbols	131	
Grammar and Logic	132	
Comparing and Contrasting the Verbal and Written Modes	133	
Linking Words and Images Through Diexis	135	
PowerPoint Presentations and Pointing	136	
Mirror Neurons: Copycat Cells	137	
Visual Narrative: Capturing the Cognitive Thread	138	
Q&A Patterns	139	
Framing	139	
FINSTs and Divided Attention	140	
Shot transitions	141	
Otto Canadana	***	


Cartoons and Narrative Diagrams	142
Single-frame Narratives	144
Conclusion	145
CREATIVE META-SEEING	147
Mental Imagery	148
The Magic of the Scribble	152
Diagrams are Ideas Made Concrete	155
Requirements and Early Design	156
Visual Task Analysis	157
The Creative Design Loop	158
Cognitive Economics of Design Sketching	158
The Perceptual Critique	160
Meta-seeing with Design Prototypes	162
Visual Skill Development	163
Conclusion	164
THE DANCE OF MEANING	165
Review	166
Implications	172
Design to Support Pattern Finding	172
Optimizing the Cognitive Process	174
Learning and the Economics of Cognition	177
Attention and the Cognitive Thread	179
What's Next?	181
Index	183

Universal Principles of Design topics

Good symmetry works. Asymmetry works. Broken symmetry is tricky.



https://en.wikipedia.org/wiki/Rule of thirds#/media/File:RuleOfThirds-SideBySide.gif The rule of thirds was first written down by John Thomas Smith in 1797.

https://soundcloud.com/robertinventor/fibonacci-rhythm-no-bar https://www.facebook.com/david.canright.1/videos/vb.1534748873/10205137603829769/?type=2 &theater Music with both pitches and rhythm determined by Fibonacci series

